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Introduction

In rational drug design process, it’s the common situation
that the binding activity data of a set of compounds acting
upon a particular protein is known, while information of the
three-dimensional structure of the protein active site is ab-
sent. Either a quantitative structure-activity (or structure-prop-
erty) relationship model (QSAR/QSPR) or a three-dimen-

sional pharmacophore hypothesis that is consistent with
known data should be useful and predictive in evaluating new
compounds and directing further synthesis. The QSAR/QSPR
study assumes that the difference of the molecules in the
structural properties experimentally measured or computed
accounts for the difference in their observed biological or
chemical properties [1-3]. The result of QSAR (QSPR) usu-
ally reflects as a predictive formula, while a pharmacophore
model postulates that there is an essential three-dimensional
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Abstract

Three-dimensional pharmacophore hypotheses were built from a set of 17 mianserin-like antagonists against
octopamine receptor class 3 (OAR3) in locust nervous tissue. Among the ten chemical-featured models gener-
ated by program Catalyst/Hypo, three hypotheses were considered to be important and predictive in evaluating
OAR3 antagonists. Predictions were fairly precise for all molecules but the three outliners including eresepine,
metoclopramide and yohimbine. While the ideal and null hypotheses had a cost of 66.50 and 124.97, respec-
tively, the ten resulting hypotheses possessed costs from 78.96 to 92.04. The best hypothesis that was confirmed
to have a 95% chance of true correlation yielded a low RMS of 1.05 and high regression r of 0.934. Active
antagonists mapped well onto all the features of the hypothesis such as hydrophobic, aromatic ring or positive
ionizable features. On the other hand, inactive compounds lack of binding affinity were shown to be poorly
capable of achieving an energetically favorable conformation shared by the active molecules in order to fit the
3D chemical feature pharmacophore models. In addition, from the comparison and conformation analysis it was
proposed that positive ionizable feature contained a lower weight than hydrophobic or an aromatic ring one.
Further research on the comparison of models from agonists and antagonists may help elucidate the mecha-
nisms of OAR3 and other types of octopamine receptor-ligand interactions.
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Figure 1. Structures of octopamine antagonists in the training
and test set.
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9 eresepin 10 chlorpromazine 11 cyproheptadien 12 imipramine

13 amitriptyline 14 gramine 15 triprolidine 16 desipramine

17 isopropylarterenol 18 propranolol 19 metoclopramide 20 yohimbine
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arrangement of functional groups that a molecule must pos-
sess to be recognized by the receptor. It collects chemical
features distributed in 3D space that is intended to represent
groups in a molecule that participates in important binding
interactions between ligands and their receptors. Hence, a
pharmacophore model provides both crucial information
about how well the chemical features of a subject molecule
overlap with the hypothesis model and the ability of mol-
ecules to adjust their conformations in order to fit a receptor
with energetically reasonable conformations. Such charac-
terized 3D models convey important information in an intui-
tive manner and can provide predictive capability for evalu-
ating new compounds.

Octopamine receptors are perhaps the only non-peptide
receptors whose occurrence is restricted to invertebrates.
Recently much attention has been directed at the
octopaminergic system as a valid target in the development
of safer and selective pesticides [4]. The biogenic monoam-
ine octopamine (p-hydroxyethanolamine),  which is the
monohydroxylic analogue of the vertebrate hormone no-
radrenaline, was first discovered in the salivary glands of
octopus by Erspamer and Boretti in 1951 [5]. It’s found that
octopamine is present in a high concentration in various in-
vertebrate tissues [6]. This multifunctional and naturally oc-
curring biogenic amine has been well studied and established
as 1) a neurotransmitter, controlling the firefly light organ
and endocrine gland activity in other insects; 2) a neurohor-
mone, inducing mobilization of lipids and carbohydrates; 3)
a neuromodulator, acting peripherally on different muscles,
fat body and sensory organs such as corpora cardiaca and the
corpora allata and 4) a centrally acting neuromodu-lator, in-
fluencing motor patterns, habituation and even memory in
various invertebrate species [7-9]. The action of octopamine
is mediated through various receptor classes which is cou-
pled to G-proteins and is specifically linked to an adenylate
cyclase. Thus, the physiological actions of octopamine have
been shown to be associated with elevated levels of cyclic
AMP [10]. Three different receptor classes OAR1, OAR2A,
and OAR2B had been distinguished from non-neuronal tis-
sues [11]. In the nervous system of locust, a particular recep-
tor class was characterized and established as a new class
OAR3 by pharmacological investigations of the [3H]-octo-
pamine binding site using various agonists and antagonists.

Our interest in octopaminergic antagonists was aroused
by the results of QSAR study using molecular similarity in-
dexes from rigid or flexible fitting as descriptors (unpublished
data). It was found that electrostatic and atom matching in-
dices gave reasonable regressions exemplified by Eq. 1 (log
P is the standard physicochemical parameter calculated by
atom-type scheme, Rfe. stands for the electrostatic similar-
ity index from rigid fitting.)

pKi = 0.673log P + 142.903Rfe (1)

[n=20, SD=1.22, R=0.62, F(2,17)=5.39]

Until now, no 3D structure-activity model has been re-
ported in these ligand-receptor interactions. Eq. 1 was im-
proved by excluding 3 outliners and regressing again, which
was proved to be useful in conformational analysis and ap-
pears to be a good predictive model. Furthermore, molecular
modeling and conformational analysis were performed in
Catalyst/Hypo to gain a better knowledge of the interactions
between octopaminergic compounds and OAR3, in order to
understand identification of the conformations required for
binding activity. The current work is aimed to generate 3D
chemical function-based hypotheses from some set of
octopamine antagonists, in which were tested the [3H]-
octopamine binding to OAR3 in the locust central nervous
tissue.

Methods and Experimental

Antagonists and their bioassay activities

Twenty molecules that employ a single [3H]octopamine bind-
ing criteria were selected from recent publications by Roeder
T. [12-14]. The respective IC50 values of the antagonists had
been corrected according to the Cheng-Prusof correction [Ki=
IC50/(1+ K/Kd)] in order to obtain the Ki values. The antago-
nists especially those which share structural homologies with
mianserin have been investigated. Their chemical structures
and experimental activities are listed in Fig. 1 and Table 2.

Catalyst/Hypo methodology

Set of compounds: In using a “garbage in garbage out” strat-
egy, metoclopramide (19, 52,480 nM), yohimbine (20, 81,283
nM) and eresepine (9, 478.6 nM) couldn’t be understood by
Catalyst. According to the rules of Catalyst/Hypo (according
to on-line manual of Catlalyst), these three outliners were
considered to be unsuitable for generating hypothesis and
statistical analysis. Molecules 19 and 20 may be considered
to have volume problems. In other words, these molecules
have the functionality that bumps into a portion of the recep-
tor preventing close contacts of the binding functions. Com-
pound 9 might also contain some unknown negative features.
In another point of view, as Catalyst pays particular attention
to the most active compounds in the training set, excluding
such inactive compounds as 19 and 20 may not generally
affect the generation of the chemical feature space relevant
to the experiment. And as the order of magnitude including 9
contains other four molecules, 9 was dropped out so that each
compound in the training set possesses something new to
teach Catalyst. Thus, a set of 17 molecules that employs a
single [3H]octopamine binding criteria was selected from the
reported data as the target training set. Affinities of the an-
tagonists are expressed as their pKi values in nanomole and
activities range over four orders of magnitude (min. 1.02 nM
and max. 29,500 nM).
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Molecular modeling: energy minimizing and conformation
search: Molecules were created using CAChe Editor (ver-
sion 3.8), followed by energy minimization from molecular
mechanics (MM2) and MOPAC (AM1, PM3) (Details were
given previously [15]). After importing the MOL files trans-
ferred by CAChe translator, Catalyst automatically gener-
ated no more than 255 conformational models for each com-
pound using the Poling Algorithm. The models emphasized
a conformational diversity under the constraint of 20 kcal/
mol energy threshold above the estimated global minimum
based on use of the CHARMm force field [16,17].

Hypothesis generation and validation: The above molecules
associated with their conformational models was submitted
to Catalyst hypothesis generation. This process only consid-
ered surface accessible functions such as hydrogen bond ac-
ceptor, hydrogen bond donor, hydrophobic, negative charge,
positive charge and ring aromatic etc. The hypothesis gen-
erator was restricted to select only five features due to the
molecule’s flexibility and functional complexibility. A pre-
parative test was performed with hydrogen bond acceptor
(HBA), hydrogen bond donor (HBD), hydrophobic (Hp),
negative ionizable (NI) and positive ionizable (PI). NI and PI
were used rather than negative charge and positive charge in
order to broaden the search for deprotonated and protonated
atoms or groups at physiological pH. It was found that hy-
potheses contain good correlation with HBA, Hp and PI.
Furthermore, in order to emphasize the importance of an aro-
matic group corresponding to the phenol moiety of octopa-
mine, ring aromatic (RA) which consists of directionality
was chosen to be included in the subsequent run.

During a hypothesis generation run, Catalyst considers
and discards many thousands of models. It attempts to mini-
mize a cost function consisting of two terms. One penalizes
the deviation between the estimated activities of the training
set molecules and their experimental values. The other pe-
nalizes the complexity of the hypothesis. The overall assump-
tion used is based on Occam’s razor, that between otherwise
equivalent alternatives, the simplest model is best. Simplic-

Hypotheses Function1 Function2 Function3 Cost RMS r

1 Hp 1 Hp 2 RA 78.96 1.047 0.934

2 Hp 1 Hp 2 RA 79.11 1.102 0.924

3 Hp RA 1 RA 2 79.47 1.093 0.927

4 Hp RA 1 RA 2 79.68 1.129 0.920

5 Hp RA 1 RA 2 80.44 1.151 0.918

6 Hp 1 Hp 2 RA 83.12 1.330 0.885

7 Hp RA 1 RA 2 85.83 1.424 0.868

8 PI RA 1 RA 2 88.05 1.461 0.864

9 PI RA 1 RA 2 88.12 1.493 0.885

10 PI RA 1 RA 2 92.04 1.668 0.811

Abbreviations: Hp hydrophobic;
RA ring aromatic; PI positive ionizable.

Table 1. Characteristics of ten lowest cost  hypotheses from
17 OAR3 antagonists (cost of ideal hypothesis: 66.50, cost of
null hypothesis: 124.97)

Figure 2. Plot of predicted binding affinity activities against
experimental values (pK i in nM).
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ity is defined using the minimum description length princi-
ple from information theory. The overall cost of a hypothesis
is calculated by summing three cost factors: weight cost (a
value that increases in a gaussian form as the feature weight
in a model deviates from an idealized value of 2.0), error
cost (a major value that increase as the RMS (Root Mean
Square) difference between estimated and measured activi-
ties) and configuration cost (a fixed cost which depends on
the complexity of the hypothesis, equal to Entropy of the
hypothesis space). Not only a numerical score for each gen-
erated hypothesis, Catalyst also provides the cost values of
an ideal hypothesis and of the null hypothesis. An ideal hy-
pothesis is a lower bound on the cost of the simplest hypoth-
esis that still fits the data perfectly. Cost of the null hypoth-
esis presumes that there is no statistically significant struc-
ture in the data, and that the experimental activities are nor-
mally distributed about their mean. Generally, the greater
the difference between the two costs, the higher the prob-
ability for finding useful models. In terms of hypothesis sig-
nificance, a generated hypothesis with a score that is sub-
stantially below that of the null hypothesis is likely to be
statistically significant and bears visual inspection. It’s re-
ported that a returned hypothesis which has a cost that dif-
fers from the null hypothesis by 40 - 60 bits might possess a
75 - 90 % chance of representing a true correlation. Using
the Fisher method [18], the statistical significance of the hy-
pothesis was accessed by randomizingly scrambling the

Figure 3a. Mapping of mianserin (light green), hydroxy-
mianserin (red) and maroxepine (yellow) onto hypotheses 1,
which contains hydrophobic 1 (green), hydrophobic 2 (green)
and ring aromatic (yellow) features.

Figure 3b. Mapping of mianserin (light green), hydroxy-
mianserin (red) and maroxepine (yellow)  onto hypotheses 3,
which consists of hydrophobic (green), ring aromatic 1
(yellow) and ring aromatic 2 (yellow).

Figure 3c. Mapping of mianserin (light green), hydroxy-
mianserin (red) and maroxepine (yellow)  onto hypotheses 9,
which is characterized by positive ionizable (red), ring
aromatic 1 (yellow) and ring aromatic 2 (yellow) features.
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bioassay activities in 19 new training sets, and regenerating
the hypotheses for each new trial.

The quality of the correlation among the data in the train-
ing set is given by the RMS score which was normalized by
the log (uncertainty) and the regression constant r.

Results and Discussions

The characteristics of the ten lowest cost hypotheses that were
obtained are listed in Table 1. The total fixed cost of the run
is 66.50 and the cost of the null hypothesis is 124.97. The
cost range between best hypothesis 1 and null hypothesis is
46.01, the cost range over the 10 generated hypotheses is
13.08. Hypotheses 1, 2 and 6 consist of same chemical fea-
ture functions as Hp1, Hp 2 and RA. Hypotheses 3, 4, 5 and
7 consist of three-feature functions, namely Hp, RA 1 and
RA 2. The third group composes of hypotheses 8, 9 and 10

which are characterized by PI, RA 1 and RA 2 common fea-
tures. Furthermore, comparing procedure and regression stud-
ies show that hypotheses 1, 3 and 9 are the best models among
the three groups and are selected for further evaluation (Figs.
3a-c). Even though hypothesis 9 has a slightly higher RMS
than 8 (1.493 and 1.461, respectively), they have nearly no
difference in cost values and the correction between experi-
mental and predicted activities is higher in hypothesis 9 (0.885
for hypothesis 9 and 0.864 for hypothesis 8). The regression
lines for hypotheses 1, 3 and 9 are shown in Fig. 2. Appar-
ently, hypotheses 1 and 3 have higher regression correction
than 9 (0.934 for hypothesis 1 and 0.927 for hypothesis 3),
and the RMS indices for hypotheses 1 and 3 are very small
as 1.047 and 1.093, respectively. These statistical data sug-
gest that the hypothesis models are likely to reflect good
chance of correlation. It’s expected that the best hypothesis
1 has at least a chance of 95% in representing true correla-
tion in the data [18]. Thus, the statistical significance of the
hypothesis was assessed in a randomization trial in which 19
hypotheses generation experiments were conducted using
training set spreadsheets with randomizingly scramble ac-
tivity data. Among the 190 resulting hypotheses, none had a
cost score lower than that of hypothesis 1, and only one had
slightly lower cost scores than hypothesis 3. Three had slightly

Comps. Exp. Confs. Hypo. 1 Hypo. 2 Hypo. 3 Hypo. 4 Hypo. 5 Hypo. 6 Hypo. 7 Hypo. 8 Hypo. 9Hypo.10

1 1.0 23 3.1 5.3 1.6 2.1 2.3 12 1.1 7.1 11 16

2 1.2 16 2.5 2.6 1.5 2.2 1.3 4.7 3.2 8.4 6.3 8.3

3 1.7 15 3.7 3.2 1.6 3.2 1.7 4.7 1.6 13 10 8.3

4 19.1 101 16 12 52 25 41 15 470 31 26 92

5 35.5 55 24 28 80 43 130 5.9 210 99 62 140

6 55.0 10 1000 1200 710 730 650 1500 570 12 10 8.3

7 117.5 71 98 45 660 740 660 30 800 190 420 130

8 269.2 138 380 400 680 730 700 630 470 3200 3200 3700

9 * 478.6 22 3.1 4.6 1.5 2.5 2.1 7.5 1.2 9.5 8.3 14

10 758.6 54 620 560 800 730 750 170 460 52 150 280

11 851.1 14 1900 1700 790 750 750 1500 480 370 140 88

12 1445.4 62 1200 1200 910 720 810 1500 480 330 430 160

13 1584.9 58 1500 1400 790 720 810 1400 500 3100 3200 3300

14 1819.7 21 1100 1400 800 1300 820 1900 590 3200 3500 3500

15 2884.0 73 1000 850 750 720 660 1200 670 4400 4600 3700

16 3235.9 89 1100 1200 790 710 780 1400 490 560 250 170

17 16982.4 247 1000 1100 1200 960 910 1400 1100 3100 3200 3300

18 29512.1 212 22000 29000 17000 41000 20000 14000 170003100 3200 3200

19 * 52480.7 94 18 12 900 820 710 53 650 3100 3330 3300

20 * 81283.1 253 9.5 8.2 660 700 640 8.1 470 3600 3800 3400

* excluded from hypothesis generation. Abbreviations: Comps.
compounds (ref. Fig. 1 for structures); Exp. experimental data
(pK i in nM); Confs. number of configurations; Hypo.
hypothesis.

Table 2. Predicted activity from 10 best hypotheses against
actual binding activity data for 20 antagonists
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lower cost scores than hypothesis 9. These tests indicate that
the original hypotheses 1, 3 and 9 represented true correla-
tion in 95, 90 and 80 percent chance, respectively.

All calculated affinity activities from 10 best hypotheses
and the number of generated configurations for each mol-
ecule are listed in Table 2. Antagonists 9, 19 and 20 were
excluded from the hypothesis generation (see also section
2.1). Mianserin, hydroxymianserin and maroxepine are the
three most active compounds, while all hypotheses except
hypothesis 7 predicted a little higher affinity for mianserin
than that for maroxepine. These molecules map well onto all
three hypothesis features at similar way (see Figs. 3a-c) and
therefore are considered to be equivalent. This result may
also imply that Catalyst treats mianserin-like structures rea-
sonably in the process of calculating a hypothesis. In map-
ping chlorpromazine which has moderate binding affinity
(exp. 758.6 nM) with hypotheses 1, 3 and 9, it was found that
it mapped two features of these models by RA and Hp. Though
the chlorine atom substituted at the hydrophobic benzene ring
has the tendency of acting as a hydrophobic block, the dis-
tance constraint of chlorine-benzene is found to be between
only 2.16-4.17 angstroms in the case of mapping onto hy-
pothesis 1 (Fig. 4). Another reason why chlorpromazine is
about 20 times less active than promethazine might contrib-
ute to the deviating behaviour in mapping of chlorine-substi-
tuted benzene ring with RA. An ideal distance between the

two hydrophobic groups is 5.33 angstroms in mianserin-hy-
pothesis 1 model (see Fig. 4). Meanwhile, ideal distances of
RA-HB 1 and RA-HB 2 in hypothesis 1 are 4.57 and 4.66
angstroms. It’s interesting that promethazine (exp. 35.48 nM),
an analogue of chlorpromazine, seems to utilize its lipid side
chain to mimick the hydrophobic aromatic ring in mianserin
and chlorine atom in the case of chlorpromazine with a proper
distance constraint of about 4.58-6.58 angstroms (Fig. 4).
The HB function near the Cl group of chlorpromazine is con-
firmed by the discovery that imipramine (exp. 1445.4 nM),
which lacks such a hydrophobic group, is about three times
less active than chlorpromazine. Using hypothesis 3 to pre-
dict the activity of an outliner metoclopramide, a slightly
lower affinity value of 900 nM was gained. Propranolol with
low affinity (exp. 29,500 nM) fits only one feature of hy-
pothesis 1 or 3. More active antagonists map well onto all
the features of the hypotheses. On the contrary, inactive com-
pounds lack binding affinity are poorly capable of achieving
an energetically favourable conformation shared by the ac-
tive molecules in order to fit the 3D common feature phar-
macophore model.

Thus, valuable models were found in hypotheses 1, 3 and
9 which facilitated the evaluation of the antagonists and pre-
diction of new compounds or could be served as a searchable
key in database searching. Roughly speaking, hypothesis 1
and hypothesis 3 have the good similarity in 3D spatial shape.

Compound No. R Activity (nM) Predicted Activity Error

AAT1 H 281.8 410 3.5

AAT2 2-CH3 645.7 1000 1.5

AAT3 2-Cl 436.5 430 -1

AAT4 2-F 446.7 1000 2.2

AAT5 3-F 251.2 1100 4.5

AAT6 4-F 457.1 1000 2.2

AAT7 2-CF3 288.4 120 -2.4

AAT8 3-CF3 380.2 67 -5.7

AAT9 3,4-F2 446.7 1000 2.3

AAT10 2,5-Cl2 131.8 110 -1.1

AAT11 2,6-Cl2 1258.9 510 -2.5

AAT12 2-Cl-4-F 182.0 400 2.2

AAT13 3-Cl-4-F 109.6 1000 3.7

Table 3. Activity and predicted activity of AATs from
Hypothesis 1

N
H

S

N
R
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An aromatic ring feature in hypothesis 3 is considered to be
more accurate in assessing mianserin-like compounds which
have plural aromatic rings. In spite of a relatively higher RMS
and higher cost, hypothesis 9 is important in treating low
affinity compounds like propranolol, even including outliners
metoclopramide and yohimbine (Fig. 5). Though some of
these molecules can fit the PI feature with a basic amine or
amide that is protonated at physiological pH, poor mapping
with the hydrophobic aromatic ring was observed in this
model. Hence, it could be proposed that PI contains a lower
feature weight than RA or Hp. Additionally, in a default com-
mon hypothesis generation, all chemical features are con-
tributed equally in providing binding energy. This is surely
not the right place for most biological systems. Though at
most cases, chemists do not know exactly to what extents a
common feature interacts with the receptor, it should be use-
ful and challengeable to emphasize some features and to
lighten other ones in the process of generating and evaluat-
ing a pharmacophore hypothesis. We therefore manually
changed the weights of these three feature points, assigning
a relative weight of 2 to positive ionizable 1 sphere, a rela-
tive weight of 2.5 to the ring aromatic 2 and a higher weight
of 3 to the unusual ring aromatic 3. The set of compounds

were evaluated again, resulting into high regression correla-
tion. With this feature-weight modified model, yohimbine
(exp. 81,200 nM) was found to have an evaluated activity of
29,000 nM, and metoclopramide (exp. 52,500 nM) was pre-
dicted to be as inactive as a Ki of 8,000 nM.

The best statistically significant hypothesis 1 was applied
to access some synthesized molecules including some 2-
(aralkylamino)-2-thiazolines (AAT s) [19] whose binding ac-
tivity was tested against OAR3 on locust. The predicted val-
ues and the bioassay activities of these molecules are listed
in Table 3. Further calculation on the comparison of the 3D
hypotheses from agonists and antagonists are in progress.

Antagonists were studied in generating the hypothesis.
The study about the agonists is in progress and will be pub-
lished in series in the near future. Apparently, antagonists
may not interact with the same part of the membrane with
which the agonists interact. The ionophore, one component
of the cell membrane, may be activated between a ligand-
receptor interaction. Antagonists may act via the receptor or
via the ionophore or a combination of both. Taken the part of
the membrane with which the agonist interacts as the true
receptor, the antagonist may well interact with an area sur-
rounding the receptor including the ionophore. Hence, fur-

Figure 4. Mapping of chlorpromazine (blue) and prometha-
zine (green) onto hypothesis 1 (hydrogens on carbons are
omitted for clarity). The ideal distance between RA and Hp 2
is 4.66 angstorms, while that of Hp 1-Hp 2 and RA-Hp1 are
5.33 and 4.57 angstroms, respectively. Chlorpromazine maps
RA with a slightly deviated benzene ring with its Cl group
tending to mimick the hydrophobic 2 feature.

Figure 5. Mapping of metoclopramide (red, est. 8,000 nM),
yohimbine (yellow, est. 29,000 nM) and propranolol (violet,
8,000 nM) onto feature-weight modified hypothesis 9.
Although these molecules can fit the PI feature (red) with a
basic amine or amide that is protonated at physiological pH,
poor mapping with the two hydrophobic aromatic ring
features are observed in this model.
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ther research on the comparison of the 3D hypotheses from
agonists and antagonists as well as those generated from the
corresponding data from various insect tissues might be in-
teresting and stimulating to investigate further.

Conclusion

Catalyst/Hypo was useful in building 3D pharmacophore
models from the binding activity data and conformational
structure. It can be used as an alternative for QSAR/QSPR
methods preferred with easy visualization and high predic-
tion. Three best hypotheses 1, 3 and 9 were obtained from
this study and were applied to map with the active or inac-
tive compounds. Important features were found in Hp, RA or
PI of the surface-assessable models. It was found that for
some inactive compounds, their lack of binding affinity is
primarily due to their inability to achieve an energetically
favourable conformation shared by the active compounds in
order to fit the 3D common feature pharmacophore keys. The
best statistically significant hypothesis 1 was applied to ac-
cess some synthesized molecules like AAT s, showing a rela-
tively good predictivity.

Based upon this study, several three-dimensional phar-
macophore models for the octopamine antagonists-OA3 re-
ceptor interactions have been proposed, which are consid-
ered to be useful in both searching alternative structural tem-
plates from 3D databases and designing new leads for hope-
fully more active compounds. A comparison study of 3D
hypothesis models of antagonists and agonists is in progress
and are expected to clarify the mode of action of these com-
pounds acting on OAR3. On the other hand, such work will
surely help elucidate the mechanisms of OAR3 and other
types of octopamine receptor-ligand interactions.
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